Characterizing oral microbial communities across dentition states and colonization niches
نویسندگان
چکیده
منابع مشابه
Glycoside Hydrolases across Environmental Microbial Communities
Across many environments microbial glycoside hydrolases support the enzymatic processing of carbohydrates, a critical function in many ecosystems. Little is known about how the microbial composition of a community and the potential for carbohydrate processing relate to each other. Here, using 1,934 metagenomic datasets, we linked changes in community composition to variation of potential for ca...
متن کاملIntercellular communications in multispecies oral microbial communities
The oral cavity contains more than 700 microbial species that are engaged in extensive cell-cell interactions. These interactions contribute to the formation of highly structured multispecies communities, allow them to perform physiological functions, and induce synergistic pathogenesis. Co-adhesion between oral microbial species influences their colonization of oral cavity and effectuates, to ...
متن کاملChanges in Microbial Biofilm Communities during Colonization of Sewer Systems.
The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofil...
متن کاملColonization patterns of soil microbial communities in the Atacama Desert
BACKGROUND The Atacama Desert is one of the driest deserts in the world and its soil, with extremely low moisture, organic carbon content, and oxidizing conditions, is considered to be at the dry limit for life. RESULTS Analyses of high throughput DNA sequence data revealed that bacterial communities from six geographic locations in the hyper-arid core and along a North-South moisture gradien...
متن کاملMicrobial mineral colonization across a subsurface redox transition zone
This study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microbiome
سال: 2018
ISSN: 2049-2618
DOI: 10.1186/s40168-018-0443-2